

www.ieaghg.org

Update to the Development of CO₂ Capture Technologies in Far East Asia

Stanley Santos

IEA Greenhouse Gas R&D Programme

CCS Opportunities in CCOP Region

CCOP-EEPM Workshop (Indonesia)

September 2012

Presentation Outline

- Development of CO₂ Capture Technologies in the Far East Asia
 - Japanese
 - South Korea
 - China
- CO2 Capture Technologies
 - Pre-Combustion
 - Post-Combustion
 - Oxyfuel Combustion
 - Industrial CCS

JAPAN'S DEVELOPMENT OF CO2 CAPTURE TECHNOLOGIES

Strategy of CCS in Japan

- CCS under the Japanese Strategic Energy Plan
 - Plan enacted in 2003, revised in 2007 and 2010 by Japanese Government
 - Direction of the energy policy based on the 3E principles, Energy security, Environment, and Economy
 - CCS is an important part of this strategic plan
- Target is to commercialize CCS by 2020
 - conduct large-scale CCS demonstration projects
 - conduct R&D on reducing the capture cost of CO2

Cool Earth Innovative Energy Technology Program

* EMS: Energy Management System, HEMS: House Energy Management System, BEMS: Building Energy Management System

CCS Development Target

• Current Cost:

 4,200 JPY (USD 52.5) /t-CO2 was estimated for new pulverized coal fired power plant

Target Cost:

- 2,000s JPY (USD 25) /t-CO2 by around 2015
- 1,000s JPY (USD 12.5) /t-CO2 by the 2020s

Technologies:

- Pre Combustion: physical and chemical absorption (JPOWER, JGC etc.), membrane (RITE)
- Post Combustion: chemical absorption (MHI, RITE, Toshiba etc.)
- Oxy Fuel: Callide A in Australia (JPOWER, IHI etc.)

Development history of air-blown IGCC in Japan 🛵

Shareholders of CCP are 10 major Utilities in Japan

Pilot plant IGC Research Association 200t/d Equivalent to 25MW (1991-1996)

Demonstration plant CCP R&D Co.,Ltd. 1700t/d 250MW (2007-2010)

Process development unit CRIEPI-MHI 2t/d(1983-1995)

Confirmation test plant MHI Nagasaki 24t/d (1998-2002)

CRIEPI: Central Research Institute of Electric Power Industry

Consideration for CCS at Nakoso IGCC Plant

- Japanese government funded a feasibility study on possibility of capturing CO₂ from Nakoso IGCC (owned by CCP R&D Co. Ltd.) and transported to Iwaki-Oki Depleted Gas Field (owned by INPEX)
- Study funded by NEDO

Post-Combustion Capture Development in Japan

- Development led by Major Engineering Companies and Research Organisations...
 - Mitsubishi, Hitachi, Toshiba, RITE, etc...
- Development for:
 - Retrofit
 - New Build
- Focus:
 - Energy Efficiency
 - Cost Improvement

~3000 tpy pilot plant (Toshiba)

~1200 tpy pilot plant (Hitachi)

Post-Combustion Capture Development in Japan

PL- The T

(Scaling Up Projects – MHI Experience of CO₂ Capture from Coal Fired Flue Gas)

Alabama, USA 2011: 500 tpd (~150,000tpy)

Nagasaki, Japan 2006: 10 tpd (~3,000tpy

Hiroshima, Japan 2003: 1 tpd (~300tpy)

Oxyfuel Project at Callide A Power Station

(Showcase for Australian-Japanese Collaboration)

Callide A Project – would be the world's 1st oxyfuel retrofitted power station.

- 1st oxyfuel and world's largest pilot plant that will actually produce electricity.
- 2 ASU (330 tpd each)
- 1 CPU Capturing ~22,000 t/y CO₂
- Installation of 2 new Wall Fired Burners
 - A unique position to provide information related to the burner – burner interaction

Project Outline

COURSE 5

COURSE50 / CO₂ Ultimate Reduction in Steelmaking Process by Innovative Technology for Cool Earth 50

Development of the chemical absorption process

COURSE 50

Collaboration Scheme to Develop New Chemical Absorbents

COURSE 50

SOUTH KOREA'S DEVELOPMENT OF CO₂ CAPTURE TECHNOLOGIES

National CCS Master Plan

(Information obtained from KEPRI)

- Overview of the National CCS Master Plan
 - Comprehensive action plan for CCS Demonstration in Korea, released on July 13, 2010
 - Planned and issued by Presidential Committee on Green Growth and Relevant Ministries
 - 2.3 Trillion KRW(1.7B USD) in 2010-2019(52% by the Government)

Background

- Recognizing the increasing importance of CCS as a practical solution to reduce GHG emissions
- Should need to accelerate the development and competition of the CCS market
- Development in GHG Reduction Technologies as New Growth Engine

Vision and Objective

- Vision: Growing into the leading countries to supply CCS technology
- Objective: To Secure Plant Commercialization and Technical Competitiveness by 2020
- Verification of Integrated Capture-Transport-Storage System of 1MtCO₂/yr
- Cost target at \$30/tCO2 (\$20 for capture, \$10 for storage)

Benefits/Expectation

CO₂ reduction up to 32 MtCO₂ by 2030, contributing 10% of the total domestic CO₂ reduction amount.

CCS business opens 100 Trillion KRW (cumulative) market by 2030.

National CCS Roadmap of S. Korea

Project Outline

Tentative Demo. Site (Youngdong TPP)

Project Outline

Ideas/Projects for CO₂ Reduction

Research Activities of CO₂ Project in RIST

(1) CO₂ Capture from BFG stream using aqueous ammonia

- (2) Waste heat recovery from molten slag and hot sinter
- (3) CO₂ utilization

- Suppression of ammonia vaporization

2nd Stage pilot plant

Operation of 2nd stage pilot plant (May. 2011~)

- Development of CO₂ capture process for commercialization using aqueous ammonia in iron & steelmaking Ir
 - Utilizing the waste heats at low and mid-temperature waste heat as regeneration energy
 - Ultimate goal: CO₂ removal > 90%, CO₂ purity > 95%, energy requirement < 2.0 GJ/ton-CO₂

CHINA'S CO₂ CAPTURE AND UTILISATION DEVELOPMENT

23

CCS Development in China

- Does not feature in the economic goals of 12th FYP but is included as a high technological priority within the R&D programme
- MOST supports both fundamental research (Programme 973) and technology development (Programme 863) while the National Science Foundation focuses on fundamental and generic research.
- Significant activities initiated by SOE where <u>CO2</u> <u>Utilisation</u> (i.e. for supply of Food Grade CO2 or EOR application) is the major driver.

GREENGEN Project – Near Zero Emissions IGCC

• Research and Development Project led by Huaneng Group

- Project Initiated in 2006 (~US\$ 1 Billion)
- Supported by the State Council, NDRC, MOST and MOF
- Consortium of 8 Energy Enterprises and 1 US Company
- Project Goal:
 - To establish a high-efficiency, coal-based IGCC poly-generation plant with efficient reduction of pollutants and near-zero emissions of CO₂.

• Project Components (Phase 1 & 2)

- R&DD on 2000t/d HCERI (formerly from TPRI) coal gasifier and 250MW IGCC power plant (Syngas production integrated to the Siemens GT Technology)
- R&DD on coal-based hydrogen production, hydrogen power generation and CO₂ Capture
- To verify key technologies, system integration, availability and reliability of key components consisting of the "GreenGen" technology

Three Stages of the GreenGen Programe

Stage I

Stage III

中国华能

CHINA HUANENG

GREENGEN IGCC Laboratory

(Under Commission and Fully Operational by 2012)

- Power: 265MW
- Net eff. 41%
- SO₂ : <1.4mg/Nm3
- NO_x: 52mg/Nm3
- PM: <1mg/Nm3
- Start to operate in Dec. 2011

- •Gasifier: HCERI
- •GT: SIEMENS
- ASU: Kai Feng Air Separation
- ST: Shanghai Electric
- HRSG: Hangzhou Boiler
- •Engineering: HCERI,SINOPEC,NWEPDI

GREENGEN Project: CO₂ Capture Component

- SynGas slip stream (6000 Nm³/h or ~15 MW_t) to demonstrate
 - the delivery of high purity H₂ from coal based IGCC for Fuel Cell application; and
 - CO₂ capture of ~60,000 Mt/y for EOR trials

• Asia Development Bank (ADB) Financing

- Provided US\$135 Million in Loan and US\$ 5 Million in Grant
- Grant is aimed to develop CDM documentation

Post-Combustion Capture Development in China

~3000 t/y CO₂

~120,000 t/y CO₂

- Cooperation between CSIRO and China Huaneng Group – CHNG
- CO₂ captured from flue gas slip stream of 800MWe Gaobeidian Coal Fired CHP (Beijing)
- Operation started July 2008

- Project led by Huaneng and TPRI
- CO₂ captured from the flue gas slip stream of 660MWe USC Shidongkou (No. 2) Power Plant (Shanghai)
- Operation started in December 2010
- Total Investment: US\$ 14.6 Million
- Total CO₂ capture cost of < 200RMB/t (US\$ 30-35/t) incl. processing to food grade.

Roadmap for Oxy-fuel R&D in China (SKLCC Draft)

Oxyfuel Combustion R&D Development – HUST

- Features of the 35MWt Oxyfuel Pilot Plant
- Supported granted under MOST 863 Programme
- Project led by Huazhong University of S&T and Others.
- Goal:
 - To set up a full demonstration plant combining carbon capture, storage and utilization
- Scale:
 - 35 MWt oxy-fuel combustion boiler with 100,000 t/a CO2 storage
- Location: Yingcheng, Hubei Province
- Technology:
 - Oxy-fuel combustion + storage in salt mines
 - Status: Expected Start Up 2014

Datang Oxyfuel Demo Project

- Daqing 350MWe Project
- Full size Oxyfuel Combustion CO₂ Capture
- Cogeneration of Heat and Power based on SC PC Boiler using lignite
- Location: Daqing, Heilongjiang province
- EOR and CO₂ storage: adjacent to PetroChina's Daqing oil field for EOR, near Songliao basin for geological sequestration

Anticipated Project Interface

SIEG Oxyfuel Demo Project

- Shanxi SIEG Project is based on 350MWe Power Plant (To capture ~2 MTPY CO₂)
 - Project Based on Joint US-China Fossil Energy Protocol
 - Pre-feasibility Study Completed
 - Partnership with Shanxi International Energy Group (SIEG)
 - Key Technology Partners:
 - B&W providing technology for boiler and environmental island
 - APCI providing ASU and CPU
 - WVU providing support for CO2 storage

Fig. 6 SIEG boiler side and front views.

Potential for Coal to Chemical with CO₂ Capture Demonstration (Data from IEA CCC)

- Significant growth in scale and extent of application in the coal to chemicals sector
- Opportunity to capture, at relatively low cost, concentrated streams of CO₂.
- Early opportunities of CO2 storage demonstration in the likes of EOR application

Supplier	Coal gasification projects		
	Operational	Design/ construct	Total
GE	27	10	37
Shell	14	5	19
Siemens	1	2	3
Sasol Lurgi	3	3	6
GTI U-Gas	1	1	2
ECUST	8	9	17
TPRI	-	3	3
CACG	3	15	18
Tsinghua U	3	5	8
ICC-CAS	3	-	3
Total	63	53	116

Direct CTL with CCS Demonstration

- Shenhua CTL (Ordos, Inner Mongolia) – operational since 2008
 - Sub-Bit. Coal from Inner Mongolia ~ 3.5 MPTY
 - ~1.08 MMTPY of Oil Products
 - o LPG
 - o Naptha
 - o Diesel
 - o Phenol
 - CO₂ Emission: ~3.5MPTY

DCL – Overview...

- 2 x Shell Gasifiers (@~315 TPD H₂)
- Solvent Based DCL Facility
 - Chinese owned developed catalyst
 - Reactor build by Chinese Heavy Industry
- Slip stream CO₂ Capture

Shenhua's CTL Demonstration (CO₂ Storage Component)

Shenhua CCS project 2007 - 2011

- Technical research on CO2 purification
- Analysis on the Ordos Basin storage potential.
- Select location
- CCS demonstration project of 100,000 ton level

CO2 Storage Demonstration started in 2011!

Data and Pictures from Shenhua & ACCA21

Concluding Remarks

- Far East Asian countries has established their CCS programme to address their target for greenhouse gas emissions reduction.
- CCS development in the Far East has been led by Japan since the 1990's. Now in position to provide commercial offering and demonstration of their technology.
- China is a latecomer to the CCS. Nonetheless, they have catch up and now in position to lead in the demonstration of this technology – particularly in the area of CO₂ utilisation and EOR application.
- CCS application to industry should play an important role to the global reduction of GHG emissions. Far East Asia is currently one of the leaders in this area of development.